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. <\ ABSTRACT
”J In order to obtain lower confidence limits for the reliability of series

systems using binomial subsystem data, K. A. Weaver introduced the method of

“key test results". This work was extended by A. Winterbottom. 1In the
present paper, conditions are obtained under which the "method of key test
results" gives Buehler optimal lower confidence limits identical with those

given by the ordering induced by the maximum likelihood estimator.

AMS (MOS) Subject Classifications: 62N05, 62F25

\;/Key Words: System reliability, Reliability estimation, Key test results,
Buehler optimality,

Work Unit Number 4 (Statistics and Probability)
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SIGNIFICANCE AND EXPLANATION
In this paper, conditions are established under which the total number of

defects may be used with no loss in obtaining the lower confidence limit for

the reliability of a series system. In such a case, the computations are

reduced to the elementary task of determining a lower confidence limit for a

single binomial parameter.
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THE OPTIMALITY OF LOWER CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS
OBTAINED BY THE METHOD OF KEY TEST RESULTS OR OTHER RELATED TECHNIQUES

Bernard Harris and Andrew P. Soms

1. Introduction. IlLet Y,,!z,...,Yk, k » 2 be independent binomial random

variables with parameters (nj,py), 1 = 1,2,...,ke The objective is to obtain
a 1 - a lower confidence limit for h(;) "TEI | A

This problem arises naturally in reliabiiity theory, where h(p) 1is the
reliability of a series systems of independent components: The data is obtained
from independent binomial subsystem experiments. Thus Y4,Yp,.¢.,¥y are the
number of times each of the k subsystems functioned in n4,ny,...,n; Bernoulli

trials respectively. We let 'xi =ng - Y, 1=1,2,...,k, be the number of

times each of the k subsystems failed in the experiment.

Let
k n n,-x x
£(x,p) =T | (xi)pii Lt - p,) Lop (X=x (1.1)
i=1 i P
and let
- k
q(x) = l l (ni - Xi) . (1.2)
i=1
and let
- - k
h(p) = g(x)/ | | ny . (1.3)

i=1

It is easily verified that h(p) is the maximum likelihood estimator of h(p)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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and the minimm variance unbiased estimator of h(P). For this reason, the E%;,.
performance of lower confidence limits based on g(X) providss a yardstick %;gg%
against which the performance of other criteria can be assessed. In particular, tﬁﬂﬁf

~(1) < ;(2)'

we call m(x) an ordering function if whenever x we have
-(;(1)) > m(;(Z))' ;(i) - (xgi)'...’xii))' 0 < x;i) < ngs ;(1) < x(2) means
xgi’ < x§2), = 1,2,...,ke It is clear that g(xX) is an ordering f;nction. !
Another ordering function of interest to this discussion is s(;) - X (ng=x4). .
i=1

In the discussion that follows, it will be convenient to index the subsystems so
that n4 < n, € e¢e < ny. This will entail no loss of generality.

For any ordering function m(x), the optimal 1 - a lower confidence limit
determined by mn(x) 1is

a . =ine{n(p)[e_{m(X) > m(x))} = a} , (1.4)
m(xo) P
where ;o denotes the observed outcome.

An experimental outcome is said to be a “key tes' result” (A. K. Weaver [2])
if x3 = ny,eee,X) = np. We examine Weaver's analysis of key test results in
Section 2. A. Winterbottom's [3] extension of Weaver’'s work is then discussed.
We also discuss some other techniques which depends only on the total number of
failures.

In Section 3, we present the main points of the paper. There we obtain
conditions under which the optimal lower confidence limit for h(;) using an
ordering function depending on the total number of failures coincides with that

given by 9(;)- Correspondingly, we also obtain conditions under which the two

procedures differ. These conclusions are compared with the results obtained by

Winterbottom and others. RN
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AN
[N
el
RN




6 05 AT At RV A HAI S g B ik W T A AR A P £ 32 M p e Ay p s w it A B Lt WL R AN Al G B e MUl e SR B A i

2. The Method of Key Test Results and Other Techniques Based on the Number of

w:
-
AN

1 e
L.‘..:.

Failures. Weaver [2] introduced the notion of a "key test result”. He studied f:;:«
L;f.'.’

the analysis of key test results for nq = n; = *** = n, = n. In order to tf;:';-:‘
motivate the subject matter of the next section, we summarize his results.
' IR T

To facilitate obtaining a solution, Weaver replaced (1.4) by t"f;zta

-~ ~ ~ ‘»g.".’-;

a® = inf {n(p)|B_{8(X) > s(x,)} = a} , (2.1) R

s(x ) =~ * P -
0 pep

where

[ 3 ~
P I{p:p.‘nngooc-pj-p,pj+1-pj+2=ooo=pks1'1<j<k}.

Then

~ ~ n n-xi xi
P {s(X) > s(x)} =] T (L) “(1-p7%, (2.2)
~ X
p i=1 T4

where the sum is over all xq,X2se<</,Xy such that kn -~ § x, > s(;o).
i=1
For p € P', h(p) = Dj. In addition, since pq = py = *°** = Py = P, we can

write

)
“a

S R T,
ARG
Eo

5%

k .
P{) % =z}~ (:")pjn-z(1 - 0)*
i=1

and thus

k
P{kn - % X, >8(x.)} =p{ ) X <kn- s(x,)}
4o 1 0 joq 0

kn-s(; )

= ) (in)pj“'z(1 -0*. (2.3)
z=0

For fixed 3j, the equation

kn-s(x,) 3

£(j,p) = ), (1n)pjn-z(1 - p)z = q, 0<ac< 1, e

z=0
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has a unique solution in ¢, which we denote by pj(a). Thus, to obtain the
infimum required in (2.1), it suffices to set p = pj(a) in (2.3), then
a' . =minlo (@), (0 00?00, (o (@)} . (2.4)
s(xo)

Weaver gave some heuristic arquments which suggest that for pj(a)
sufficiently close to unity for all j, a' A = p1(a). This conclusion appears
to hold with much greater generality thans::q:ired by Weaver. This impression is
based on extensive numerical experimentation. If that conclusion is assumed
valid, then Weaver's method is an extraordinarily simple method of obtaining
lower confidence limits for the reliability of series systems of independent
subsystems. Consequently, it seems desirable to investigate its properties.

Weaver had a number of additional suggestions, but without proofs. 1In
actuality he proposed a more complicated ordering function than s(X), but he
did not make substantive use of this ordering function. For experimental
outcomes more general than key test results, he proposed comparing

8(x)=1 -~ s(x) -
CL 0 G ™a-ep™ L BMep? ™0 - 00, 3= 23,00k .
0 0

J

Each of the k expressions above are equated to a and the minimum of
01(0).03(0),...,02(0) is taken as the lower confidence limit. Note that

D,(a) uses s(x) - 1 as the upper level of summation. For unequal sample
sizes, Weaver suggested replacing each x4 by n1xi/ni. Weaver notes that this
should provide a conservative result. (Intuitively this would seem to be the
case).

The use of 8(x) as an ordering function has a long history. It is

suggested by the following considerations. From (1.3)
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i=1 i=1

Assume that pq¢,Pyse--,Px are all "close to unity"”, so that the X;.
i =1,2,...,k assume “"small values"™ with probability "close to unity". Also

assume that nq,ny,...,n; are all large. Then, approximate as follows:

k X k X

h(p)-T_r(1-;-'!'-)~1- ):;i-. (2.5)
i=1 i 1=1 4

If the n4, i = 1,2,...,k are "approximately equal”, one replaces n; by an

average value, say n. Thus,

- k
hip) ~1- ] X/n (2.6)
i=1
- k
and the statistic h(p) depends only on ) X; and thus is statistically
i=1

equivalent to s(X).
Methods using the approximations (2.5) and (2.6) are discussed in I. V.
Pavlov [1].
Winterbottom [3] studied the use of key test results. He proposed basing
the lower confidence limit on the key test results ([n1h(;)],n2,-~-,nk):
([n1h(;)] + 1,n2,-..,nk), n1 < n2 € ee0 ¢ Ny . However, in the theoretical
appendix to the paper, he studies conditions under which key test results provide
the same lower confidence limit as the optimal lower confidence limit based on
h(;)- In this instance, he assumes nq = np = *** = n = n and utilizes the
condition that ; x, € xq,0, where x4 ¢ is the observed number of failures

i=1
on the first component (since this is a key test result).

Specifically, wWinterbottom concludes that this holds whenever
k

(kn - Z xg) 2 s', where
i=1
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*a max {s|ktn* Vs - 0V < (k- 1n+s-2). (2.7)
0<s<n

If ng > nq, for key test results, Winterbottom uses the same lower limit that
would be obtained if n, = ng and asserts that if the lower confidence limit
obtained for key test results satisfies (2.7), then this lower confidence limit

will also agree with that given by the optimal confidence limit determined by

h(p).
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3. Comparison of Methods Based on the Number of Failures and Methods Based on

the Minimum Variance Unbiased Estimator. In this section, we obtain the

theoretical results which provide the comparison between optimal lower confidence
limits based on the two different procedures discussed in the previous sections.
‘To establish the principal result, several preliminary lemmas are introduced.

Lemma 3.1. Let 0<n1<n2<“°‘nk,k>2 and 0<xi<ni, i‘1,2,o-c'k

k
be given. Then if ] x; is fixed,
=1
k 1§ k
fm1 o+ Vogm Vg

k
Proof. If X xy > nq, the conclusion is obtained trivially. Hence assume
k i=9
1 x; <nq. For 1< j <k, since ny > ny, we have

i=1
ol

Then,

ji1 ji1 351

x X; + nqn; = n X: = Nq4X: 2 DN, = N X; = NiXy ,
3 1= i 13 3 1=  § 173 175 3j 121 i 373
or
T }
(n, - x)(ing - x3) ? n (ng - x,) .
1 i=1 i 3 3 J 1 i=1 i

Successively setting j = 2,3,...,k, we obtain the following inequalities:
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(S

(ng = x4)(ny = x3) 2 ny(nq =
(ng = X9 = x3)(n3 = x3) 2 n3(nq -

81 - X2)
X1 - x2 - X3)

ki A e A T

-
!
[N

eJ
»
D

(n1 - X1 - x2 - 000 = xk_1)(nk - xk) P nk(n1 - x.‘ - 08¢ = xk) . (3.3)
The conclusion follows readily upon multiplying the above inequalities.
Lemma 3.2. Let 0 < n1 < nz € ee0e ¢ nk and 0 < xi < ni, i= 1,2,coo,k with
k
.11 xy < nqy be given. Let 0 ¢ z; <ngy, i =12,...,ke Then if
l=
k k « k k
a=1{z: ) z, < ) xi}, A = {z : ] (n, = z,) 2 ] (n, = xi)} '
i=1 i=1 i=1 i=1

a necessary condition that A = a* is, %3 =0,1i=1,2,...,k, or x5 = Yo

0 <y K« Nq, X4 = 0, i # j, and nj = nNqe

k k
Proof. Let B={z: )} z = ) x}. If ZeBnNnA", then, utilizing Lemma
i=1 i=1
3.1, we have
k k k k
[T, =2z)>T [ tn, =x)>(n; = ) %) |n
- b gt Vogm g
k k
=(ng = ) z) ] n, - (3.4)
i=1 i=2
~% k ~% k‘
Let z = ( l X3+,0,+..,0). Then z € B CA and since ) x; < ny was
i=1 i=1
hypothesized, it follows that 0 € z; < n;, i = 1,2,...,k. Thus,
k N k k
[ T tng =20 =(ngy= ] xp T Tny- (3.5)
i=1 i=1 i=2
-~k *
Assume that z € A ; then
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order that (3.6) holds, equality must hold in each of the inequalities (3.3),

equivalently in (3.2). Thus,

-1
(ny = npdxy + x5 L %3 =0, 3 =200,k (3.7)
i=1

nce nj p ] Ry, 0 < xj: it follows that

=1
(nj - n1)xJ- = 0, Xj 2 xi = 0, j = 2,ooo,k . (3.8)

i=1

isume that xg ¥ 0, 8 < k, then xg(xq + x5 + ¢e°° + xs_1) = 0, which implies

1at  xy = 0, 1 < s. Furthermore, (ns - n1) Xg = 0 implies ng = ny and

W8 Ny =ny = °°° = ng.

srollary. If x; =0, i = 1,2,.0.,k, then A =R .

coof. If Z €A, then zy =0, i =1,2,...,k and

k k k

— -~ * -~ *

||(ni-zi)=||ni=|| (ni-xi). Thus 2 € A Ifzeh:zi=0,

i=1 i=1_ i=1

= 1’2, ese ,k and Z € A.

The following discussion shows that the condition of Lemma 3.2 is not

ufficient. If the condition holds, namely xj =Y, 0 <Y <nq X4 = O 1 #3,

{l

y=mnq 1 €3¢k Then 11 x, =Y and | | (ng = x4) = (nq = Y) l L ng. We

ongtruct a ; e A' with ; not in A.

o« e .

LR
Oy 'y .l-.'

OV L)

PR L P
2 e bty
U P

Thus let n, < n, € ose ¢ ny be given with 2q = 2y = 00t T Zy g 7 0,

P
'y

k’B)Yc Then

AR

X X K k=1 2
| | (ng i) = (ng = Y) T_T n;, 1_1.(ni - 2z4) = (ng ~ B) T—T ng . F
i=1 i=2 i=1 i=1

n order that z 2 A', we must have
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i=1 1=2
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o
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This holds whenever

| BN

R o

e

However, z 2 A whenever B > Y. Thus, it suffices to set B =Y + 1. Then

o e

there is a z € A* with z # A whenever

.‘-vn-g‘l“v"'.“"

<

<+

-h
2|

h. In particular, for Y =1, A # A" 4if n > 2n, and if Y =12, A ¥ A"

: whenever ny ’ (3/2)n1.

Lemma 3.3. Let 0 < nq < n, € see n, k 22, 0<Y <nq be given. ILet
k

| i PR PEPLAALGYYS aaet DALUAPEILIA

z = (21'22'00012k)' 0 < Zi < ni, i = 1 2,0.0'k0 Iet AY = {z : Z zi ‘ Y}l

k i=1 .

* * .

L AY = {z : | I (n - z ) ’ (n - Y) il | n } Then AYC AY' Q = 1,2,0-0,1’11 - 1. ':'
T~ i=1 =2 .

Proof. If Y = 0, the conclusion is immediate from the Corollary to Lemma

4.2. Thus if ny = 1, the lemma is established. Hence, assume ng > 1.

Consequently, the conclusion is established if we show that

* o

- We proceed by induction. Assume AY C AY, Y=0,1,¢ee,m, m < ny - 1. From -
N their respective definitions, it is immediate that N
»

A_CA * * =

- Y Y41’ AY C AY+1 . (3.9) i}
;; Thus, from the induction hypothesis, it is immediate that B
o A, CA. 3.10) :
;: Y Y+1 . ( . E

*

However

-10-

i
L




~ k
A, ~-A ={z: §J z =y+1}.
Y+1 Y i=1 i
;
3
From Lemma 3.1; if z € A7+1 - Ayc then

p

s ) 3 k

: [T (o, —2,) > tag=-vy-1 T ng s

i i 1
. i=1 i=2

~ L ]
consequently such 2z is in AY*" establishing the conclusion.

Lemma 3.4. Let 0<n‘ ‘nz‘ ...‘nk' 0‘21(“1( i= 1'2’¢oo'k‘ Let

k

A: = {zg 3 l zi Y + 11 where 2, 1 = 1,2,...,n are real valued and Y < n4
i=1

is a positive integer.

Let j be the least index, 1< j € k such that

k
ny-(l n=Yy~0/k=3+1>0. (3.11)
i=j
Then
N k-j+1
‘ x (ng =) + ) n =1 -1
J+1
nax I I (ng - zi) = K =3 + 1 | i | nj o (3.12)
~_ ¢ i=1 J i=1
zEA
Y
o - k
- Proof. It suffices to consider vectors Z such that ) z, =Y + 1, since, if
k i=1
Z 2, > + 1, reducing any positive component of 2z will increase
i=1
X
| | (ng = 2;). Hence, let
i=1
- k
c={z: 121 z, =Y + 1, 0¢< z, <ny, 1= 1,2,000,k}

s aes s

and let

D= {; : zy < Ny, i=12,.00,k} .
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; k
;E Clearly C and D are convex sets. Furthermore, on D, 2 log(ny - z;) 1is a
-';T i=1
::-: strictly concave function. Thus it has a unique maximum on
ot - k
D* = {z : 2 zi =y + 1, zi < ni, i=1,2,...,k}, which we now characterize.
P i=1
. Using Lagrange multipliers or alternatively, from the arithmetic mean -
:'_- geometric mean inequality, we have
K k
i X (ng=v)+ ] n, =1
2. i=2 ~
max | | (ni - zi) = = = g{n,Y,k) . (3.13)
- -~ * ig1
z€D
e
~%* * *
= The maximum is attained for z = (z,,zz,...,zk), where
.': . k
zg=ng = () n =Y=0/k, 4i=12,000,k, (3.14)
i=1 "
“::: * * [ X ] * ::..-
" Thus, since C C D, -
—
o Xk k_
- max | | (ng = z,) <max | | (ny - 24) (3.15)
- ~__ i=1 ~_ * =1
- z€C z€D
~R k~ *
- and equality holds whenever =z is in C. Since )‘ z, = Y+ 1> 0, there is
:_-:. i=1
.-;'_' a least index i such that z; > 0. 1If ;* is in C€, then z: < 0. From the
T k . X
N strict concavity of ) log(ni - zi) and since C C D, max l I (ni - zi)
‘ i=1 » zec i=1
o will be attained on the boundary of C whenever 2z is in €. Thus, set
,'.:’. zq = 0 and repeat the above computations with k replaced by k -1,
: R ~% * -«
i=2,,.0,ke That is, set 21 - (0,221,...,zk1), where ]
3 )
.__:.--.\
X )
-, * . N
‘:-.' 211 = ni - (iéz ni - Y -1)/(k - 1)0 i= 2, sesk ’ (3016) :_::“::;
._; ",'-:.*.1
e
e ';.-';.s
- NN
i ested
.0 Y
-12- X
- 4
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Lemma 3.5. Let 0<n1 <n2< LA <nk, 0‘21(“1, i= 1,2,0--,ko Let

LI JPUaL Ve MM

k . 122 Py
g,(n.Y,k) = n, ,_l,zl (ng =259 = 1y k=T R LA

If z;1 < 0, repeat the process as indicated above. This is to be continued

until the solution is in C. It can be easily seen that the process terminates,

-~
for it z;,z;1,...,z;-1'k_2 are all negative, then 2z, = (0'0""'0";,k-1)
k
* O *
and zy )_y > 0 since 1}1 z, =Y+ 1 ivplies 2z, , 4 =Y+ 1> 0. The

conclusion follows immediately and is given by (3.11) and (3.12).

Y < nq be a non-negative integer. Let

~ Kk . k k
Ay = {z: 121 zg <Yl A= {z : ];I; (n; = 2zy) > (ng = Y) Eni} . (3.18)

*

*
Then if AY C Ay' we have AY‘1 C AY“

Proof. If Y = 0, the lemma is trivially true. Hence assume Y > 0. Now
k
*
A, CA_  is equivalent to A$ C AYC. or whenever 2 z; >y it follows that
i=1

k
~ c -~ *c
| | (n; = zy) < (ny = Y) !-g ni. Let z € AY and assume z € AY « Then there

is a Zj such that Zj > 0. Let ;1 = (211221"°lzj - 1:"°rzk)o Then
~ C
z, e Ay_1 and

k

——T (n, - z,) + T_T (n, =2,) <(n;~-v) ||
A R 1 I

_-—-k ————

X
TT g = zg9) =

|
i=1 i=

If §=1,

k k
=T o+ ny=ta=-v+nT[n

k
i=2 i=2 i=2
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Similarly, if j ¥ 1, then

k
| I n, € | | n
i¥j 1 i=2 i
~ *
upon replacing n4 by nyJ and again z, e 57-1'
Combining the preceding lemmas, we can establish the following theorems.

Thecrem 3.1. Let 0 <n, €<n, € ¢e¢ee<n ,k>»2 0<x <ng, 1=1,2,.e.,k be
el 2. 1 2 k b § 1

n
given with z xj < nqe Let z = (z1,22,...,zk), where 0 ¢ zg < ny,
1=1 . K k
i= 1,2,o-u,ko et A = {z : )‘ zi < l xi}'
i=1 i=1
. k k
A = {z : I I (n, - z,) > I I (n, - x,)} .
i 1 1 1
i=1 i=1
Then A = A" 1if and only if x4y =Y, 0 <Y <ny, x4 =0, 1 # 3, ny = ny and
k k
max | | (ni - zi) < (n1 -Y) | I ngy . (3.19)
~ _¢Cc i=1 i=2

Z€A

Proof. The necessity is immediate from Lemma 3.2. From Lemma 3.3, we then have
that A C A*. From (3.19), it follows immediately that A. C A, establishing

the conclusion:

Theorem 3.2. let 0 < n1 < n2 C eeo ¢ nk' k > 2, 0 < Xi < ni' i= 1,2,.0.'k be
k

given, where X x4y < nq. Then a sufficient condition that the Buehler optimal
im=1

lower confidence limit obtained by the method of key test results coincides with

that given by the use of the maximum likelihood estimator as an ordering function

ia

K k~3+1
(n, = Y) + l n, - 1 o
! =301 * ‘H’ n, < (n, -~ v) Ikl n (3.20)
k-3 =1 1 ! =2 * '

-14-
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where j is specified by Lemma 3.4. 1In this case, the method of key test

regsults is valid for all xq <Y, where Y satisfies (3.20).

Then
P {g(X) > g(x))} <1, (ng = xqo%q + 1), (3.21)
P TT ey
im=1
where

p t
1 n-t~1 - t - g ny n-i 4
Ipin = t,t + 1) = Bn = €,£ + 1) {) u (1 = u)*du iéo (i)P q - (3.22)

Proof. The proof is an immediate consequence of lLemmas 3.4 and 3.5 and the

k
following observations. The set A = {z : ). z ¢ Exi} is the set whose
i=1
probability is sought in (1.4), when the method of key test results is utilized
k k
and the set A" = {z : I I (n, - z,) > I (n, = x,)} 4is the corresponding set
=1 i i j=1 1 i
when m(x) = g(x).
Also,
3
k k-j+1
X (ny =)+ (3%1 n, - N 4y X
max TT(n -2) < X =3+ 1 i [ny <tmy =0 TTn
=6A° i=1 i=1 1=2

j as specified in (3.12), since the maximum as given in Lemma 3.4 was calculated
over a set of real numbers and the application requires that x4,X,+¢.,%]
Z4,32,+++,2x be integer valued.

Remark. Some comments are required in applying Lemma 3.4. The solutions are
real valued. However, the application requires integer values. From non-
integral solutions, utilizing the strict concavity, one can easily determine the

required integers.

=15=

R NN A A A AR A I
e D

e e T, e e e e e
S AR AN




. T p——y

—

*
Lemma 3.5 shows that there is a largest Y for which AB o AB for all

0<B8< Yy, If Y= 0, from the Corollary to Lemma 4.2, we have that Ay C N.

[ ]
1f Y-n1-1, then for AY A_, we must have

Y

TT TTa < (1 n )"

(n, - 2,) < n, < n R
g=1 ¢+ 1 jm2 t gmg 1/K°
-16~
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